历时一周终于在 ubuntu16.04 系统成功安装 caffe 并编译,网上有很多教程,但是某些步骤并没有讲解详尽,导致配置过程总是出现各种各样匪夷所思的问题,尤其对于新手而言更是欲哭无泪,在我饱受折磨后决定把安装步骤记录下来,尽量详尽清楚明白,避免后来小白重蹈覆辙。
安装硬件: intel i5 + NVIDIA 740 M
安装流程细分为如下10个步骤,细化步骤粒度更易避免出错:
1、安装依赖包
2、禁用 nouveau
3、配置环境变量
4、下载 CUDA 8.0
5、安装 CUDA 8.0
6、验证 CUDA 8.0 是否安装成功
7、安装 cudnn
8、安装 opencv3.1
9、安装 caffe
10、安装 pycaffe notebook 接口环境
第1步 安装依赖包
安装后续步骤或环境必需的依赖包,依次输入以下命令:
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev sudo apt-get install git cmake build-essential
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
有一定几率安装失败而导致后续步骤出现问题,所以要确保以上依赖包都已安装成功,验证方法就是重新运行安装命令,如验证 git cmake build-essential是否安装成功共则再次运行以下命令:
sudo apt-get install git cmake build-essential
- 1
界面提示如下则说明已成功安装依赖包,否则继续安装直到安装成功。
yhao@yhao-X550VB:~$ sudo apt-get install git cmake build-essential 正在读取软件包列表... 完成 正在分析软件包的依赖关系树 正在读取状态信息... 完成 build-essential 已经是最新版 (12.1ubuntu2)。 cmake 已经是最新版 (3.5.1-1ubuntu3)。 git 已经是最新版 (1:2.7.4-0ubuntu1.1)。 下列软件包是自动安装的并且现在不需要了: lib32gcc1 libc6-i386 使用'sudo apt autoremove'来卸载它(它们)。 升级了 0 个软件包,新安装了 0 个软件包,要卸载 0 个软件包,有 94 个软件包未被升级。
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
第2步 禁用 nouveau
安装好依赖包后需要禁用 nouveau,只有在禁用掉 nouveau 后才能顺利安装 NVIDIA 显卡驱动,禁用方法就是在 /etc/modprobe.d/blacklist-nouveau.conf 文件中添加一条禁用命令,首先需要打开该文件,通过以下命令打开:
sudo gedit /etc/modprobe.d/blacklist-nouveau.conf
- 1
打开后发现该文件中没有任何内容,写入:
blacklist nouveau option nouveau modeset=0
- 1
保存时命令窗口可能会出现以下提示:
** (gedit:4243): WARNING **: Set document metadata failed: 不支持设置属性 metadata::gedit-position
- 1
- 2
无视此提示~,保存后关闭文件,注意此时还需执行以下命令使禁用 nouveau 真正生效:
sudo update-initramfs -u
- 1
第3步 配置环境变量
同样使用 gedit 命令打开配置文件:
sudo gedit ~/.bashrc
- 1
- 2
打开后在文件最后加入以下两行内容:
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
- 1
- 2
- 3
保存退出。
第4步 下载 CUDA 8.0–》9.0
进入 https://developer.nvidia.com/cuda-downloads ,依次选择 CUDA 类型然后下载即可。
第5步 安装 CUDA 8.0–》9.0
第四步下载的1.4G的 CUDA中包含有 nvidia 显卡驱动,故此步骤 CUDA 的安装包括了 nvidia 显卡驱动的安装,此时注意你是否已经安装过 nvidia 显卡驱动,若无法保证已安装的 nvidia 显卡驱动一定正确,那就卸载掉之前安装的 nvidia 显卡驱动(卸载方法链接),然后开始安装 CUDA 8.0;若可以保证已安装正确的 nvidia 显卡驱动,则直接开始安装 CUDA 8.0,在安装过程中选择不再安装 nvidia 显卡驱动。
为了方便开始安装过程的路径查找,把下载的 CUDA 安装文件移动到 HOME 路径下,然后通过 Ctrl + Alt + F1 进入文本模式,输入帐号密码登录,通过 Ctrl + Alt + F7 可返回图形化模式,在文本模式登录后首先关闭桌面服务:
sudo service lightdm stop
- 1
然后通过 Ctrl + Alt + F7 发现已无法成功返回图形化模式,说明桌面服务已成功关闭,注意此步对接下来的 nvidia 驱动安装尤为重要,必需确保桌面服务已关闭。
Ctrl + Alt + F1 进入文本模式,然后运行 CUDA 安装文件进行安装,之前我们已经把 CUDA 安装文件移动至 HOME,直接通过 sh 命令运行安装文件即可:
sudo sh cuda_8.0.61_375.26_linux.run --no-opengl-libs
- 1
其中 cuda_8.0.61_375.26_linux.run 是我的 CUDA 安装文件名,而你需替换为自己的 CUDA 安装文件名,若此时忘记可直接通过 ls 文件查看文件名,这也是我建议把 CUDA 安装文件移动到 HOME 下的另一个原因。
执行此命令约1分钟后会出现 0%信息,此时长按回车键让此百分比增长,直到100%,然后按照提示操作即可,先输入 accept ,然后让选择是否安装 nvidia 驱动,这里的选择对应第5步开头,若未安装则输入 “y”,若确保已安装正确驱动则输入“n”。
剩下的选择则都输入“y”确认安装或确认默认路径安装,开始安装,此时若出现安装失败提示则可能为未关闭桌面服务或在已安装 nvidia 驱动的情况下重复再次安装 nvidia 驱动,安装完成后输入重启命令重启:
reboot
- 1
重启后登录进入系统,配置 CUDA 环境变量,与第3步相同,使用 gedit 命令打开配置文件:
sudo gedit ~/.bashrc
- 1
在该文件最后加入以下两行并保存:
export PATH=/usr/local/cuda-8.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
- 1
- 2
- 3
使该配置生效:
source ~/.bashrc
- 1
第6步 验证 CUDA 8.0 是否安装成功–》9.0
分别执行以下命令:
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery sudo make ./deviceQuery
- 1
- 2
- 3
- 4
- 5
若看到类似以下信息则说明 cuda 已安装成功:
./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "GeForce GT 740M" CUDA Driver Version / Runtime Version 8.0 / 8.0 CUDA Capability Major/Minor version number: 3.5 Total amount of global memory: 2004 MBytes (2100953088 bytes) ( 2) Multiprocessors,(192) CUDA Cores/MP: 384 CUDA Cores GPU Max Clock rate: 1032 MHz (1.03 GHz) Memory Clock rate: 800 Mhz Memory Bus Width: 64-bit L2 Cache Size: 524288 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536),2D=(65536,65536),3D=(4096,4096,4096) Maximum Layered 1D Texture Size,(num) layers 1D=(16384),2048 layers Maximum Layered 2D Texture Size,(num) layers 2D=(16384,16384),2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,z): (1024,1024,64) Max dimension size of a grid size (x,z): (2147483647,65535,65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 1 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery,CUDA Driver = CUDART,CUDA Driver Version = 8.0,CUDA Runtime Version = 8.0,NumDevs = 1,Device0 = GeForce GT 740M Result = PASS
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42